English

∫ √ 2 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{2x - x^2} \text{ dx}\]
Sum

Solution

\[I = \int\sqrt{2x - x^2}\text{ dx}\]
\[ = \int\sqrt{x\left( 2 - x \right)}\text{ dx}\] 
Let 
\[x = 1 + \ sin\ u\]
\[or, dx = \cos\ u\ du\]
\[ \Rightarrow I = \int\sqrt{\left( 1 + \sin u \right)\left( 1 - \sin u \right)}\ cos\ u\ du\]
\[ \Rightarrow I = \int \cos^2 u\ du\]
\[ \Rightarrow I = \frac{1}{2}\int\left( \cos2u + 1 \right)du\]
\[\Rightarrow I = \frac{1}{2}\left( \frac{1}{2}\sin 2u + u \right) + c\]
\[ \Rightarrow I = \frac{1}{2}\left( \sin u \cos u + u \right) + c\]
\[ \Rightarrow I = \frac{1}{2}\left( \sin u \sqrt{1 - \sin^2 u} + u \right) + c\]
\[ \therefore I = \frac{1}{2}\left( x - 1 \right)\sqrt{2x - x^2} + \frac{1}{2} \sin^{- 1} \left( x - 1 \right) + c \left[ \because u = \sin^{- 1} \left( x - 1 \right) \right]\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.28 [Page 155]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.28 | Q 18 | Page 155

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

`∫     cos ^4  2x   dx `


\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \tan^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×