English

∫ Cot 5 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \cot^5 x  \text{ dx }\]
Sum

Solution

∫ cot5 x dx
= ∫ cot4 x . cot x dx 

= ∫ (cosec2 x – 1)2 cot x dx
= ∫ (cosec4 x – 2 cosec2 x + 1) cot x dx

= ∫ cosec4 x . cot x dx – 2 ​∫ cot x . cosec2 x dx + ​∫ cot x dx
= ∫ cosec2 x . cosec2 x . cot x . dx – 2 ​∫ cot x cosec2 x dx + ∫​ cot x dx

=∫ (1 + cot 2 x) . cot x . cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx
= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx

Now, let I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
And I2= ∫ cot x dx
First we integrate I1

I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt

⇒ cosec2 x dx = – dt

I1= ∫ (t + t3) (– dt) – 2​∫ t (–dt)
= –∫(t + t3) + 2​∫t dt

\[= \left[ - \frac{t^2}{2} - \frac{t^4}{4} \right] + 2 . \frac{t^2}{2} + C_1 \]
\[ = \frac{t^2}{2} - \frac{t^4}{4} + C_1 \]
\[ = \frac{\cot^2 x}{2} - \frac{\cot^4 x}{4} + C_1\]

Now we integrate I2
I2= ∫ cot x dx

= \[\log\left| \sin x \right| + C_2\]

Now, ∫ cot5 x dx=I1 + I2]

\[- \frac{1}{4} \cot^4 x + \frac{1}{2} \cot^2 x + \log\left| \text{sin x }\right| + C_1 + C_2\]
\[- \frac{1}{4} \cot^4 x + \frac{1}{2} \cot^2 x + \log\left| \sin x \right| + C \left[ \therefore C = C_1 + C_2 \right]\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.11 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.11 | Q 11 | Page 69

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^3 x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×