English

∫ 4 Sin X + 5 Cos X 5 Sin X + 4 Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\left( \frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \right)dx\]
\[and\text{ let 4 sin x + 5 cos x = A } \left( 5 \sin x + 4 \cos x \right) + B \left( 5 \cos x - 4 \sin x \right) . . . (1) \]
\[ \Rightarrow 4 \sin x + 5 \cos x = \left( 5A - 4B \right) \sin x + \left( 4A + 5B \right) \cos x\]
\[\text{By equating the coefficients of like terms we get}, \]
\[5A - 4B = 4 . . . \left( 2 \right)\]
\[4A + 5B = 5 . . . \left( 3 \right)\]

By solving eq (2) and eq (3) we get,

\[A = \frac{40}{41}, B = \frac{9}{41}\]
\[\text{Thus, by substituting the values of A and B in eq} (1) , we get\]
\[I = \int\left[ \frac{\frac{40}{41}\left( 5 \ sinx + 4 \cos x \right) + \frac{9}{41}\left( 5 \ cos x - 4 \ sin x \right)}{\left( 5 \sin x + 4 \cos x \right)} \right]dx\]
\[ = \frac{40}{41}\int dx + \frac{9}{41}\int\left( \frac{5 \cos x - 4 \sin x}{5 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 5 sin x + 4 cos x = t}\]
\[ \Rightarrow \left( 5 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{40}{41}x + \frac{9}{41}\int\frac{1}{t}dt\]
\[ = \frac{40}{41}x + \frac{9}{41} \text{ ln }\left| t \right| + C\]
\[ = \frac{40}{41}x + \frac{9}{41} \text{ ln } \left| 5 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 11 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×