Advertisements
Advertisements
Question
\[\int x^3 \sin x^4 dx\]
Sum
Solution
\[\int x^3 \cdot \sin x^4 dx\]
\[\text{Let x}^4 = t\]
\[ \Rightarrow 4 x^3 = \frac{dt}{dx}\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[Now, \int x^3 \cdot \text{sin x^4} \text{dx}\]
\[ = \frac{1}{4}\int\text{sin t dt}\]
\[ = \frac{1}{4}\left[ - \cos t \right] + C\]
\[ = \frac{1}{4}\left[ - \cos x^4 \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
` ∫ cos mx cos nx dx `
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int2x \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]