English

∫ C O S X − S I N X √ 8 − Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
Sum

Solution

\[\text{ Let I } = \int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[ = \int\frac{\cos x - \sin x}{\sqrt{9 - 1 - \sin2x}}dx\]
\[ = \int\frac{\cos x - \sin x}{\sqrt{9 - \sin^2 x - \cos^2 x - 2\sin x\cos x}}dx\]
\[ = \int\frac{\cos x - \sin x}{\sqrt{9 - \left( \sin x + \cos x \right)^2}}dx\]
\[ Let \left( \sin x + \cos x \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( \cos x - \sin x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{\sqrt{\left( 3 \right)^2 - \left( t \right)^2}}dt\]
\[ = \sin^{- 1} \left( \frac{t}{3} \right) + c\]
\[ = \sin^{- 1} \left( \frac{\sin x + \cos x}{3} \right) + c\]
\[Hence, \int\frac{\cos x - \sin x}{\sqrt{8 - \ sin2x}}dx = \sin^{- 1} \left( \frac{\sin x + \cos x}{3} \right) + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 18 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×