English

∫ 2 X + 5 √ X 2 + 2 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
Sum

Solution

\[\text{ Let I }= \int\frac{\left( 2x + 5 \right) dx}{\sqrt{x^2 + 2x + 5}}\]
\[\text{ Consider,} \]
\[2x + 5 = A \frac{d}{dx} \left( x^2 + 2x + 5 \right) + B\]
\[ \Rightarrow 2x + 5 = A \left( 2x + 2 \right) + B\]
\[ \Rightarrow 2x + 5 = \left( 2A \right) x + 2A + B\]
\[\text{Equating Coefficients of like terms}\]
\[2A = 2 \Rightarrow A = 1\]
\[\text{ And }\]
\[ 2A + B = 5 \Rightarrow B = 3\]
\[ \therefore I = \int\left( \frac{2x + 2 + 3}{\sqrt{x^2 + 2x + 5}} \right) dx\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x + 5}} + 3\int\frac{dx}{\sqrt{x^2 + 2x + 5}}\]
\[\text{ let x}^2 + 2x + 5 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \int\frac{dt}{\sqrt{t}} + 3\int\frac{dx}{\sqrt{x^2 + 2x + 1 + 4}}\]
\[ = \int t^{- \frac{1}{2}} dt + 3 \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 + 2^2}}\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + 3 \text{ log }\left| x + 1 + \sqrt{\left( x + 1 \right)^2 + 4} \right| + C\]
\[ = 2\sqrt{t} + 3 \text{ log }\left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C\]
\[ = 2\sqrt{x^2 + 2x + 5} + 3 \text{ log }\left| x + 1 + \sqrt{x^2 + 2x + 5} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 12 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x e^x \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×