English

∫ ( X + 2 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]
Sum

Solution

\[\text{ Let I }= \int \left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\text{ Also,} x + 2 = \lambda\frac{d}{\text{  dx }} \left( x^2 + x + 1 \right) + \mu\]

\[ \Rightarrow x + 2 = \lambda\left( 2x + 1 \right) + \mu\]

\[ \Rightarrow x + 2 = \left( 2\lambda \right)x + \lambda + \mu\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 1 \]

\[ \Rightarrow \lambda = \frac{1}{2}\]

\[\text{ And }\lambda + \mu = 2\]

\[ \Rightarrow \frac{1}{2} + \mu = 2\]

\[ \Rightarrow \mu = \frac{3}{2}\]

\[ \therefore I = \int \left[ \left( \frac{1}{2}\left( 2x + 1 \right) + \frac{3}{2} \right)\sqrt{x^2 + x + 1} \right]\text{  dx }\]

\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{3}{2}\int\sqrt{x^2 + x + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1}\text{  dx }+ \frac{3}{2}\int\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1}\text{  dx }\]

\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{3}{2} \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \text{  dx }\]

\[\text{ Let  x}^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)\text{  dx }= dt\]

\[\text{ Then, }\]

\[I = \frac{1}{2}\int \sqrt{t}\text{  dt } + \frac{3}{2} \int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \text{  dx }\]

\[ = \frac{1}{2}\int t^\frac{1}{2} \text{  dt } + \frac{3}{2} \left[ \frac{x + \frac{1}{2}}{2} \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]

\[ = \frac{1}{2}\left[ \frac{t\frac{3}{2}}{\frac{3}{2}} \right] + \frac{3}{8}\left( 2x + 1 \right) \sqrt{x^2 + x + 1} + \frac{9}{16}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| + C\]

\[ = \frac{1}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + \frac{3}{8} \left( 2x + 1 \right) \sqrt{x^2 + x + 1} + \frac{9}{16}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 4 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \cos^3 (3x)\ dx\]

\[\int \tan^5 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×