English

∫ Cos X √ Sin 2 X − 2 Sin X − 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
Sum

Solution

` ∫  { cos  x  dx}/{\sqrt{sin^2 x - 2 sin x - 3}}`
` text{ let } \sin x = t`
` ⇒ cos  x  dx = dt `
`Now,∫  { cos  x  dx}/{\sqrt{sin^2 x - 2 sin x - 3}}`
\[ = \int\frac{dt}{\sqrt{t^2 - 2t - 3}}\]
\[ = \int\frac{dt}{\sqrt{t^2 - 2t + 1 - 1 - 3}}\]
\[ = \int\frac{dt}{\sqrt{\left( t - 1 \right)^2 - 2^2}}\]
\[ = \text{ log }\left| t - 1 + \sqrt{\left( t - 1 \right)^2 - 2^2} \right| + C\]
\[ = \text{ log }\left| t - 1 + \sqrt{t^2 - 2t - 3} \right| + C\]
\[ = \text{ log } \left| \sin x - 1 + \sqrt{\sin^2 x - 2 \sin x - 3} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 15 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \left( e^x + 1 \right)^2 e^x dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

 
` ∫  x tan ^2 x dx 

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×