English

∫ X 3 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
Sum

Solution

\[I = \int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[ = \int\frac{x^2 \cdot x}{\left( x^2 \right)^2 + x^2 + 1}dx\]
\[\text{ Let x }^2 = \text{ t or 2xdx } = dt\]
\[ \Rightarrow I = \frac{1}{2}\int\frac{t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t}{t^2 + t + 1}dt\]
\[ = \frac{1}{4}\int\frac{2t + 1 - 1}{t^2 + t + 1}dt\]

\[= \frac{1}{4}\int\left[ \frac{\left( 2t + 1 \right)}{\left( t^2 + t + 1 \right)} - \frac{1}{\left( t^2 + t + 1 \right)} \right]dt\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t^2 + t + \frac{1}{4} + \frac{3}{4} \right)}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \int\frac{1}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dt \right]\]
\[ = \frac{1}{4}\left[ \text{ log}\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\frac{\left( t + \frac{1}{2} \right)}{\left( \frac{\sqrt{3}}{2} \right)} \right] + c\]
\[ = \frac{1}{4}\left[ \text{ log }\left| t^2 + t + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2t + 1}{\sqrt{3}} \right) \right] + c\]

\[= \frac{1}{4}\left[ \text{ log }\left| x^4 + x^2 + 1 \right| - \frac{2}{\sqrt{3}}\tan\left( \frac{2 x^2 + 1}{\sqrt{3}} \right) \right] + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 16 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×