English

∫ C O S E C 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int {cosec}^3 x\ dx\]
Sum

Solution

\[\text{ Let I} = \int {cosec}^3 x  \text{ dx }\]
\[ = \int {cosec}^2 x \cdot \text{ cosec x dx }\]
\[ = \int {cosec}^2 x \cdot \sqrt{1 + \cot^2 x}  \text{ dx }\]
\[\text{ Let} \cot x = t\]
\[ \Rightarrow - {cosec}^2 x  \text{  dx } = dt\]
\[ \therefore I = - \int\sqrt{1 + t^2}dt\]
\[ = - \frac{t}{2}\sqrt{1 + t^2} - \frac{1^2}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C . . . (1)\]
\[\text{Substituting the value of t in eq}   \text{ (1) }\]
\[ = - \frac{\cot x}{2} \cdot \text{ cosec x }- \frac{1}{2} \text{ log }\left| \text{ cot x + cosec x }\right| + C\]
\[ = - \frac{1}{2}\text{ cosec x cot x} - \frac{1}{2} \text{ log } \left| \frac{\cos x}{\sin x} + \frac{1}{\sin x} \right| + C\]
\[ = - \frac{1}{2} \text{ cosec x  cot x }- \frac{1}{2} \text{ log } \left| \frac{2 \cos^2 \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \right| + C\]
\[ = - \frac{1}{2} \text{ cosec x  cot x }- \frac{1}{2} \text{ log }\left| \cot \frac{x}{2} \right| + C\]
\[ = - \frac{1}{2} \text{ cosec x  cot x} + \frac{1}{2} \text{ log }\left| \tan \frac{x}{2} \right| + C \left( \because \text{ log }\left| \cot \frac{x}{2} \right| = \text{ log }\left| \frac{1}{\tan \frac{x}{2}} \right| \Rightarrow - \text{ log }\left| \tan \frac{x}{2} \right| \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 29 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int \tan^4 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×