English

∫ √ a 2 + X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{a^2 + x^2} \text{ dx }\]
Sum

Solution

\[\text{ Let  I }= \int {1_{II}  \cdot}\sqrt{a^2 {_I} + x^2} dx\]
\[ = \sqrt{a^2 + x^2} \int1 \text{ dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 + x^2} \right) \int1 \text{ dx }\right)\text{ dx }\]
\[ = \sqrt{a^2 + x^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{a^2 + x^2}} \cdot x \text{ dx }\]
\[ = \sqrt{a^2 + x^2} \cdot x - \int\left( \frac{x^2 + a^2 - a^2}{\sqrt{a^2 + x^2}} \right)\text{ dx }\]
\[ = x\sqrt{a^2 + x^2} - \int\sqrt{a^2 + x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 + x^2}}\text{ dx }\]
\[ = x\sqrt{a^2 + x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 + x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 + x^2} + a^2 \text{ ln} \left| x + \sqrt{x^2 + a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \text{ ln} \left| x + \sqrt{x^2 + a^2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 84 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×