English

∫ Cos 5 X Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos^5 x}{\sin x} dx\]
Sum

Solution

\[\int\frac{\cos^5 x}{\sin x}dx\]
\[ = \int \frac{\cos^4 x . \cos x}{\sin x}dx\]
\[ = \int\frac{\left( \cos^2 x \right)^2 . \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \times \cos x}{\sin x}dx\]
\[ = \int \frac{\left( 1 - \sin^4 x - 2 \sin^2 x \right)}{\sin x}\text{cos x dx}\]
\[\text{Let sin x }= t\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[Now, \int \frac{\left( 1 - \sin^4 x - 2 \sin^2 x \right)}{\sin x}\text{cos x dx}\]
\[ = \int \frac{\left( 1 + t^4 - 2 t^2 \right)}{t}dt\]
\[ = \int\left( \frac{1}{t} + t^3 - 2t \right)dt\]
\[ = \text{log }\left|\text{ t} \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{log} \left|\text{ t }\right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{log }\left| \sin x \right| + \frac{\sin^4 x}{4} - \sin^2 x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 46 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^4 2x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×