English

∫ 1 − 3 X 3 X 2 + 4 X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]
Sum

Solution

\[\int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[1 - 3x = A\frac{d}{dx}\left( 3 x^2 + 4x + 2 \right) + B\]
\[1 - 3x = A \left( 6x + 4 \right) + B\]
\[1 - 3x = \left( 6 A \right) x + \text{ 4 A }+ B\]

Comparing the Coefficients of like powers of x

\[\text{ 6 A }= - 3\]
\[A = \frac{- 1}{2}\]
\[\text{ 4 A }+ B = 1\]
\[4 \times \frac{- 1}{2} + B = 1\]
\[B = 3\]

\[1 - 3x = - \frac{1}{2}\left( 6x + 4 \right) + 3\]
\[Now, \int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[ = \int\left( \frac{\frac{- 1}{2}\left( 6x + 4 \right) + 3}{3 x^2 + 4x + 2} \right)dx\]
\[ = - \frac{1}{2}\int\frac{\left( 6x + 4 \right) dx}{3 x^2 + 4x + 2} + 3\int\frac{dx}{3 x^2 + 4x + 2}\]
\[ = - \frac{1}{2} I_1 + 3 I_2 \left( \text{ say} \right) . . . \left( 1 \right)\]
\[\text{ where}\]
\[ I_1 = \int\frac{6x + 4}{3 x^2 + 4x + 2} \text{ and }I_2 = \int\frac{dx}{3 x^2 + 4x + 2}\]
\[ I_1 = \int\left( \frac{6x + 4}{3 x^2 + 4x + 2} \right)dx\]
\[\text{ let }3 x^2 + 4x + 2 = t\]
\[ \Rightarrow \left( 6x + 4 \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C_1 \]
\[ = \text{ log }\left| 3 x^2 + 4x + 2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{3 x^2 + 4x + 2}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{x^2 + \frac{4}{3}x + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{x^2 + \frac{4x}{x} + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x + \frac{2}{3} \right)^2 + \frac{2}{9}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x + \frac{2}{3} \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}\]
\[ I_2 = \frac{1}{3} \times \frac{3}{\sqrt{2}} \tan^{- 1} \left( \frac{x + \frac{2}{3}}{\frac{\sqrt{2}}{3}} \right) + C_2 \]
\[ I_2 = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C_2 . . . \left( 3 \right)\]
\[\text{ from } \left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[ = - \frac{1}{2} \text{ log }\left| 3 x^2 + 4x + 2 \right| + \frac{3 \times 1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C_1 + C_2 \]
\[ = - \frac{1}{2} \text{ log }\left| 3 x^2 + 4x + 2 \right| + \frac{3}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C \left( \text{ Where C } = C_1 + C_2 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 7 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 + \cos 2x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int x \sec^2 2x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×