English

∫ Tan − 1 √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
Sum

Solution

\[\text{ Let I } = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\text{ Putting  x } = \cos \theta\]

\[ \Rightarrow dx = - \text{ sin   θ   dθ}  \]

\[and\ \theta = \cos^{- 1} x\]

\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \theta \right) d\theta\]

\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right) d\theta\]

\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right) d\theta\]

\[ = - \frac{1}{2}\int \theta_I \sin_{II} \theta   d\theta\]

\[ = - \frac{1}{2}\left[ \theta\int \sin\theta d\theta - \int\left\{ \left( \frac{d}{d\theta}\theta \right)\int\sin \theta d\theta \right\}d\theta \right]\]

\[ = - \frac{1}{2} \left[ \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta \right]\]

\[ = - \frac{1}{2} \left[ - \theta \cos \theta + \sin \theta \right] + C\]

\[ = - \frac{1}{2} \left[ - \theta . \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]

\[ = - \frac{1}{2}\left[ - \cos^{- 1} x . x + \sqrt{1 - x^2} \right] + C \left[ \because \theta = \cos^{- 1} x \right]\]

\[ = \frac{x \cos^{- 1} x}{2} - \frac{\sqrt{1 - x^2}}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 57 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×