Advertisements
Advertisements
Question
\[\int\frac{e^{2x}}{1 + e^x} dx\]
Sum
Solution
\[\int\frac{e^{2x} dx}{1 + e^x}\]
\[ \Rightarrow \int\frac{e^x . e^x}{1 + e^x}dx\]
\[\text{Let 1 }+ e^x = t \]
\[ \Rightarrow e^x = t - 1\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x . e^x}{1 + e^x}dx\]
\[ = \int \frac{\left( t - 1 \right) . dt}{t}\]
\[ = \left( 1 - \frac{1}{t} \right)dt\]
\[ = t - \text{log }\left| t \right| + C\]
\[ = \left( 1 + e^x \right) - \log \left( 1 + e^x \right) + C\]
\[\text{Let C }+ 1 = C'\]
\[ = e^x - \text{log} \left( \text{1 + e}^x \right) + C'\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ tan x sec^4 x dx `
\[\int \sin^7 x \text{ dx }\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]