Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[\text{Let x + 1 }= t\]
\[ \Rightarrow x = t - 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[ \Rightarrow dx = dt\]
\[Now, \int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[ = \int\left[ \frac{\left( t - 1 \right)^2 + 3\left( t - 1 \right) + 1}{t^2} \right]dt\]
\[ = \int\left( \frac{t^2 - 2t + 1 + 3t - 3 + 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 1}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - t^{- 2} \right) dt\]
\[ = t + \text{ log }\left| t \right| - \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = t + \text{ log }\left| t \right| + \frac{1}{t} + C\]
\[ = x + 1 + \text{ log }\left| x + 1 \right| + \frac{1}{x + 1} + C\]
\[\text{ Let 1 + C }= C'\]
\[ = x + \text{ log }\left| x + 1 \right| + \frac{1}{x + 1} + C'\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`