English

∫ X 2 + 3 X + 1 ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
Sum

Solution

\[\int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[\text{Let x + 1 }= t\]
\[ \Rightarrow x = t - 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[ \Rightarrow dx = dt\]
\[Now, \int\left( \frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} \right) dx\]
\[ = \int\left[ \frac{\left( t - 1 \right)^2 + 3\left( t - 1 \right) + 1}{t^2} \right]dt\]
\[ = \int\left( \frac{t^2 - 2t + 1 + 3t - 3 + 1}{t^2} \right)dt\]
\[ = \int\left( \frac{t^2 + t - 1}{t^2} \right)dt\]
\[ = \int\left( 1 + \frac{1}{t} - t^{- 2} \right) dt\]
\[ = t + \text{ log }\left| t \right| - \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ = t + \text{ log }\left| t \right| + \frac{1}{t} + C\]
\[ = x + 1 + \text{ log     }\left| x + 1 \right| + \frac{1}{x + 1} + C\]
\[\text{ Let 1 + C  }= C'\]
\[ = x + \text{ log }\left| x + 1 \right| + \frac{1}{x + 1} + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.10 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.10 | Q 6 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \sin^2 \frac{x}{2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^3 x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int \sin^{- 1} \sqrt{x}\ dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×