Advertisements
Advertisements
Question
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
Sum
Solution
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x \cdot e^x \right)} dx\]
\[\text{Let x e}^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + \text{x e}^x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + 1 \right) e^x dx = dt\]
\[Now, \int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x \cdot e^x \right)} dx\]
\[ = \int\frac{dt}{\cos^2 t}\]
\[ = \int \sec^2 \text{t dt}\]
\[ = \tan \left( t \right) + C\]
` = tan ( x e^x) + C `
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
`∫ cos ^4 2x dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
` ∫ tan^5 x dx `
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]