English

∫ ( X + 1 ) E X Cos 2 ( X E X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
Sum

Solution

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x \cdot e^x \right)} dx\]
\[\text{Let x e}^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + \text{x  e}^x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + 1 \right) e^x dx = dt\]
\[Now, \int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x \cdot e^x \right)} dx\]
\[ = \int\frac{dt}{\cos^2 t}\]
\[ = \int \sec^2 \text{t dt}\]
\[ = \tan \left( t \right) + C\]
` = tan   ( x  e^x)   + C `

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 37 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫      tan^5    x   dx `


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×