English

∫ X ( X − 3 ) √ X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
Sum

Solution

`\text{ We  have,} `
\[I = \int \frac{x dx}{\left( x - 3 \right) \sqrt{x + 1}}\]
\[\text{ Putting  x }+ 1 = t^2 \]
\[ \Rightarrow x = t^2 - 1\]
\[\text{ Diff  both sides }\]
\[dx = 2t \text{ dt }\]
\[ \therefore I = \int \frac{\left( t^2 - 1 \right)2t    \text{ dt }}{\left( t^2 - 1 - 3 \right)t}\]
\[ = 2\int \left( \frac{t^2 - 1}{t^2 - 4} \right)dt\]
\[ = 2\int\left( \frac{t^2 - 4 + 3}{t^2 - 4} \right)dt\]
\[ = 2\int\left( \frac{t^2 - 4}{t^2 - 4} \right)dt + 6\int \frac{dt}{t^2 - 2^2}\]
\[ = 2\int dt + 6\int\frac{dt}{t^2 - 2^2}\]
\[ = 2t + 6 \times \frac{1}{2 \times 2}\text{ log }\left| \frac{t - 2}{t + 2} \right| + C\]
\[ = 2\sqrt{x + 1} + \frac{3}{2}\text{ log} \left| \frac{t - 2}{t + 2} \right| + C\]
\[ = 2\sqrt{x + 1} + \frac{3}{2}\text{ log }\left| \frac{\sqrt{x + 1} - 2}{\sqrt{x + 1} + 2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 5 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^x \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \tan^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×