Advertisements
Advertisements
Question
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
Sum
Solution
\[\int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx\]
\[\text{Let 5}^x = t\]
\[ \Rightarrow 5^x \log 5 = \frac{dt}{dx}\]
\[ \Rightarrow 5^x dx = \frac{dt}{\log 5}\]
\[Now, \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx\]
\[ = \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{\log 5}\]
\[\text{Again let 5}^t = p\]
\[ \Rightarrow 5^t \log 5 = \frac{dp}{dt}\]
\[ \Rightarrow 5^t dt = \frac{dp}{\log 5}\]
\[Again \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{\log 5}\]
\[ = \int 5^p \cdot \frac{dp}{\left( \log 5 \right)^2}\]
\[ = \frac{5^p}{\left( \log 5 \right)^3} + C\]
\[ = \frac{5^{5^{5^x}}}{\left( \log 5 \right)^3} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
`∫ cos ^4 2x dx `
` ∫ cos 3x cos 4x` dx
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int \cot^4 x\ dx\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]