English

∫ 1 √ ( 2 − X ) 2 − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{\left( 2 - x \right)^2 - 1}}\]
\[\text{ let 2 }- x = t\]
\[ \Rightarrow - dx = dt\]
\[ \Rightarrow dx = - dt\]
\[Now, \int\frac{dx}{\sqrt{\left( 2 - x \right)^2 - 1}}\]
\[ = \int\frac{- dt}{\sqrt{t^2 - 1}}\]
\[ = - \text{ log }\left| t + \sqrt{t^2 - 1} \right| + C\]
\[ = - \text{ log }\left| \left( 2 - x \right) + \sqrt{\left( 2 - x \right)^2 - 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.14 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.14 | Q 9 | Page 83

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×