Advertisements
Advertisements
Question
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
Sum
Solution
\[\int\sqrt{x} \left( x^3 - \frac{2}{x} \right)dx\]
\[ = \int\left( x^\frac{7}{2} - \frac{2}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^\frac{7}{2} - 2 x^{- \frac{1}{2}} \right) dx\]
`= x^(7/2+1) / (7/2+1) - 2 (x^(-1/2+1))/(-1/2+1 )+ C`
\[ = \frac{2}{9} x^\frac{9}{2} - 4 x^\frac{1}{2} + C\]
\[ = \frac{2}{9} x^\frac{9}{2} - 4\sqrt{x} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]