English

∫ 1 X Log X ( 2 + Log X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{dx}{x \log x\left( 2 + \log x \right)}\]

Putting log x = t

\[ \Rightarrow \frac{1}{x} dx = dt\]

\[ \therefore I = \int\frac{dt}{t \left( t + 2 \right)}\]

\[\text{Let }\frac{1}{t \left( t + 2 \right)} = \frac{A}{t} + \frac{B}{t + 2}\]

\[ \Rightarrow \frac{1}{t \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + Bt}{t \left( t + 2 \right)}\]

\[ \Rightarrow 1 = A \left( t + 2 \right) + Bt\]

Putting t + 2 = 0

\[ \Rightarrow t = - 2\]

\[1 = A \times 0 + B \left( - 2 \right)\]

\[ \Rightarrow B = - \frac{1}{2}\]

Putting t = 0

\[1 = A \left( 0 + 2 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{2}\]

Then,

\[I = \frac{1}{2}\int\frac{dt}{t} - \frac{1}{2}\int\frac{dt}{t + 2}\]

\[ = \frac{1}{2} \left[ \log \left| t \right| - \log \left| t + 2 \right| \right] + C\]

\[ = \frac{1}{2} \log \left| \frac{t}{t + 2} \right| + C\]

\[ = \frac{1}{2} \log \left| \frac{\log x}{\log x + 2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 13 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×