English

∫ 1 − Cos X 1 + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
Sum

Solution

\[\int\left( \frac{1 - \cos x}{1 + \cos x} \right) dx\]

`= ∫ ( {2 sin ^2  x/2 }/ {2 cos ^2  x/2})` dx   ` [ 1 - cos x = 2   sin ^2  x/2  &  1 + cos x  = 2 cos ^2   x/2]`

\[ = \int \tan^2 \frac{x}{2} dx\]

\[ = \int\left( \sec^2  \frac{x}{2} - 1 \right) dx\]

\[ = \frac{\tan \frac{x}{2}}{\frac{1}{2}} - x + C\]

\[ = 2 \tan \frac{x}{2} - x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.03 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.03 | Q 11 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int x \cos^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×