Advertisements
Advertisements
Question
\[\int x \cos^2 x\ dx\]
Sum
Solution
\[\int x \cos^2 x dx\]
` " Taking x as the first function and cos"^2 x " as the second function ." `
\[ = x\int\frac{1 + \cos 2x}{2}dx - \int\left\{ \frac{d}{dx}\left( x \right)\int\frac{1 + \cos 2x}{2}dx \right\}dx\]
\[ = \frac{x}{2}\left[ x + \frac{\sin2x}{2} \right] - \int\frac{1}{2}\left( x + \frac{\sin2x}{2} \right)dx\]
\[ = \frac{x}{2}\left[ x + \frac{\sin2x}{2} \right] - \left[ \frac{x^2}{4} - \frac{\cos2x}{8} \right] + C\]
\[ = \frac{x^2}{2} + \frac{x \sin2x}{2} - \frac{x^2}{4} + \frac{\cos2x}{8} + C\]
\[ = \frac{x^2}{4} + \frac{x \sin2x}{2} + \frac{\cos2x}{8} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 - \cos 2x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
` ∫ tan^3 x sec^2 x dx `
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]