Advertisements
Advertisements
Question
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
Options
2 loge cos (xex) + C
sec (xex) + C
tan (xex) + C
tan (x + ex) + C
MCQ
Solution
tan (xex) + C
\[\text{Let }I = \int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)}dx\]
\[\text{Putting }x e^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + x e^x \right)dx = dt\]
\[ \Rightarrow e^x \left( 1 + x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{\cos^2 t}\]
\[ = \int \sec^2 t dt\]
\[ = \tan t + C\]
\[ = \tan \left( x e^x \right) + C ............\left( \because t = x e^x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int \tan^3 x\ dx\]
\[\int \tan^4 x\ dx\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]