English

∫ √ a 2 − X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{a^2 - x^2}\text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int\sqrt{a^2 - x^2} \text{  dx }\]
\[ = \int {1  _{II} \cdot} \sqrt{a^2 { _I} - x^2} dx\]
\[ = \sqrt{a^2 - x^2}_{} \int1 \text{  dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 - x^2} \right)\int1\text{  dx } \right)dx\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\frac{1 \times 2x}{2 \sqrt{a^2 - x^2}} \cdot x\text{  dx }\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{a^2 - x^2}} \right) dx\]
\[ = x\sqrt{a^2 - x^2} - \int\sqrt{a^2 - x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ = x\sqrt{a^2 - x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 - x^2} + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \left( \frac{x}{a} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 86 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×