English

∫ 1 Cos X ( Sin X + 2 Cos X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
Sum

Solution

\[\text{ Let  I }= \int \frac{1}{\cos x\left( \sin x + 2 \cos x \right)}dx\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x}{\frac{\cos x}{\cos x} \times \left( \frac{\sin x + 2 \cos x}{\cos x} \right)}dx\]
\[ = \int \frac{\sec^2 x}{\left( \tan x + 2 \right)}dx\]
\[\text{ Let tan x } + 2 = t\]
\[ \Rightarrow \sec^2 x \text{ dx } = dt\]
\[ \therefore I = \int \frac{dt}{t}\]
\[ = \text{ ln } \left| t \right| + C\]
\[ = \text{ ln } \left| \tan x + 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.22 [Page 114]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.22 | Q 9 | Page 114

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×