English

∫ 2 X − 3 X 2 + 6 X + 13 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
Sum

Solution

\[\int\frac{\left( 2x - 3 \right) dx}{x^2 + 6x + 13}\]
\[2x - 3 = A\frac{d}{dx}\left( x^2 + 6x + 13 \right) + B\]
\[2x - 3 = A \left( 2x + 6 \right) + B\]
\[2x - 3 = \left( 2 A \right) x + 6A + B\]

Comparing Coefficients of like powers of x

\[2A = 2\]
\[A = 1\]
\[6 A + B = - 3\]
\[6 + B = - 3\]
\[B = - 9\]
\[ \therefore 2x - 3 = 1 \left( 2x + 6 \right) - 9\]

\[\therefore \int\frac{\left( 2x - 3 \right)}{x^2 + 6x + 13}dx\]
\[ = \int\left( \frac{2x + 6 - 9}{x^2 + 6x + 13} \right)dx\]
` = ∫ (  {2x + 6+ 9}/{x^2 + 6x + 13} ) dx    - ∫  {9  dx }/ {x^2 + 6x + 13} `
\[ = \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 13} - 9\int\frac{dx}{x^2 + 6x + 3^2 - 3^2 + 13}\]
\[ = \int\frac{\left( 2x + 6 \right) dx}{x^2 + 6x + 13} - 9\int\frac{dx}{\left( x + 3 \right)^2 + 2^2}\]
\[ = \text{ log } \left| x^2 + 6x + 13 \right| - 9 \times \frac{1}{2} \text{ tan}^{- 1} \left( \frac{x + 3}{2} \right) + C\]
\[ = \text{ log }\left| x^2 + 6x + 13 \right| - \frac{9}{2} \text{ tan}^{- 1} \left( \frac{x + 3}{2} \right) + C\]

 

 

 

 

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 4 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×