We have,I=∫dxsinx+sin2x=∫dxsinx+2sinxcosx=∫dxsinx(1+2cosx)=∫sinxdxsin2x(1+2cosx)=∫sinxdx(1−cos2x)(1+2cosx)=∫sinxdx(1−cosx)(1+cosx)(1+2cosx)Putting Putting cosx=t⇒−sinxdx=dt⇒sinxdx=−dt∴I=∫−dt(1−t)(1+t)(1+2t)=∫dt(t−1)(t+1)(1+2t)Let Let 1(t−1)(t+1)(1+2t)=At−1+Bt+1+C1+2t⇒1(t−1)(t+1)(1+2t)=A(t+1)(1+2t)+B(t−1)(1+2t)+C(t−1)(t+1)(t−1)(t+1)(1+2t)⇒1=A(t+1)(1+2t)+B(t−1)(1+2t)+C(t−1)(t+1)Putting t + 1 = 0Putting t + 1 = 0⇒t=−11=B(−1−1)(1−2)⇒1=B(−2)(−1)⇒B=12Putting t - 1 = 0Putting t - 1 = 0⇒t=11=A(1+1)(1+2)⇒1=A(2)(3)⇒A=16Putting 1 + 2t = 0Putting 1 + 2t = 0t=−12⇒1=A×0+B×0+C(−12−1)(−12+1)1=C(−32)(12)C=−43Then,I=16∫dtt−1+12∫dtt+1−43∫dt1+2t=16log|t−1|+12log|t+1|−43×log|1+2t|2+C=16log|t−1|+12log|t+1|−23log|1+2t|+C=16log|cosx−1|+12log|cosx+1|−23log|1+2cosx|+C
Write the anti-derivative of (3x+1x).
If ∫1(x+2)(x2+1)dx=alog|1+x2|+btan−1x+15log|x+2|+C, then
Find : ∫ex(2+ex)(4+e2x)dx.