English

∫ X 3 − 3 X 2 + 5 X − 7 + X 2 a X 2 X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
Sum

Solution

\[\int\left( \frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} \right)dx\]
\[ = \int\left( \frac{x^3}{2 x^2} - \frac{3 x^2}{2 x^2} + \frac{5x}{2 x^2} - \frac{7}{2 x^2} + \frac{x^2 a^x}{2 x^2} \right)dx\]
\[ = \int\left( \frac{x}{2} - \frac{3}{2} + \frac{5}{2x} - \frac{7}{2} x^{- 2} + \frac{a^x}{2} \right)dx\]
\[ = \frac{1}{2}\ \text{∫  x dx} - \frac{3}{2}\  ∫ dx + \frac{5}{2} ∫ \frac{dx}{x} - \frac{7}{2}\int x^{- 2} dx + \frac{1}{2}\int a^x dx\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} \right] - \frac{3}{2}x + \frac{5}{2}\ln \left| x \right| - \frac{7}{2} \left[ \frac{x^{- 2 + 1}}{- 2 + 1} \right] + \frac{1}{2}\left[ \frac{a^x}{\ln a} \right] + C\]
\[ = \frac{x^2}{4} - \frac{3}{2}x + \frac{5}{2}\ln \left| x \right| + \frac{7}{2x} + \frac{a^x}{2 \ln a} + C\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} - 3x + 5 \ln \left| x \right| + \frac{7}{x} + \frac{a^x}{\ln a} \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.02 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.02 | Q 41 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×