Advertisements
Advertisements
Question
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
Sum
Solution
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[ = \int\left( a^2 \tan^2 x + b^2 \cot^2 x +\text{ 2ab tan x }\cot x \right)dx\]
\[ = a^2 \int \tan^2\text{ x dx }+ b^2 \int \cot^2 \text{x dx }+ \text{2ab ∫ dx}\]
\[ = a^2 \int\left( \sec^2 x - 1 \right)dx + b^2 \int\left( {cosec}^2 x - 1 \right)dx + 2ab\ ∫ dx\]
\[ = a^2 \left[ \tan x - x \right] + b^2 \left[ - \cot x - x \right] + \text{2ab x }+ C\]
\[ = a^2 \tan x - b^2 \cot x - \left( a^2 + b^2 - 2ab \right)x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \sin^4 2x\ dx\]
\[\int \sec^4 x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int \sin^{- 1} \sqrt{x}\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]