Advertisements
Advertisements
Question
\[\ ∫ x \text{ e}^{x^2} dx\]
Sum
Solution
\[\int x . e^{x^2} dx\]
\[\text{Let x}^2 = t\]
\[ \Rightarrow \text{2x dx} = dt\]
\[ \Rightarrow \text{x dx} = \frac{dt}{2}\]
\[Now, \int x . e^{x^2} dx\]
\[ = \frac{1}{2}\int e^t dt\]
\[ = \frac{1}{2} e^t + C\]
\[ = \frac{1}{2} e^{x^2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
` ∫ tan^5 x sec ^4 x dx `
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int \tan^3 x\ dx\]
\[\int \tan^5 x\ dx\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]