Advertisements
Advertisements
Question
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
Sum
Solution
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\text{Let 2 + 3 }\log x = t\]
\[ \Rightarrow \frac{3}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{x} = \frac{dt}{3}\]
Now, \[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[ = \frac{1}{3}\int \text{sin t dt}\]
\[ = \frac{1}{3} \left[ - \text{cos t }\right] + C\]
\[ = - \frac{1}{3}\text{cos }\left( \text{2 + 3 log x }\right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ {1}/{a^2 x^2- b^2}dx`
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]