English

∫ 1 + X 2 √ 1 − X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[ = \int\frac{2 - \left( 1 - x^2 \right)}{\sqrt{1 - x^2}} \text{ dx }\]
\[ = 2\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }- \int\frac{1 - x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[ = 2\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }- \int\sqrt{1 - x^2} \text{ dx }\]
\[ = 2 \text{ sin}^{- 1} x - \left[ \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2} \sin^{- 1} x \right] + C\]
\[ = 2 \sin^{- 1} x - \frac{x}{2}\sqrt{1 - x^2} - \frac{1}{2} \sin^{- 1} x + C\]
\[ = \frac{3}{2} \text{ sin}^{- 1} x - \frac{x}{2}\sqrt{1 - x^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 104 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \cos^5 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×