Advertisements
Advertisements
Question
\[\int \sec^4 2x \text{ dx }\]
Sum
Solution
\[\int \sec^4 2x \text{ dx }\]
∫ sec4 2x dx
= ∫ sec2 2x . sec2 2x dx
= ∫ (1 + tan2 2x) . sec2 2x dx
Let tan 2x = t
⇒ sec2 2x . 2 dx = dt
\[\Rightarrow \sec^2 2x . dx = \frac{dt}{2}\]
\[Now, \int\left( 1 + \tan^2 2x \right) . \sec^2 2x \text{ dx }\]
\[ = \frac{1}{2}\int\left( 1 + t^2 \right) dt\]
\[ = \frac{1}{2}\left[ t + \frac{t^3}{3} \right] + C\]
\[ = \frac{t}{2} + \frac{t^3}{6} + C\]
\[ = \frac{\tan \left( \text{ 2x } \right)}{2} + \frac{\tan^3 \left( \text{ 2x } \right)}{6} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`