English

∫ Sin X √ 4 Cos 2 X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
Sum

Solution

` ∫   { sin  x  dx }/{\sqrt{4 + cos^2 x -1}} `
\[\text{ let }\cos x = t\]
\[ \Rightarrow - \text{ sin x dx }= dt\]
\[ \Rightarrow \text{ sin x dx } = - dt\]
Now, ` ∫   { sin  x  dx }/{\sqrt{4 + cos^2 x -1}} `
\[ = \int\frac{- dt}{\sqrt{4 t^2 - 1}}\]
\[ = \int\frac{- dt}{\sqrt{4\left( t^2 - \frac{1}{4} \right)}}\]
\[ = - \frac{1}{2}\int\frac{dt}{\sqrt{t^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{2} \text{ log }\left| t + \sqrt{t^2 - \frac{1}{4}} \right| + C\]
\[ = - \frac{1}{2} \text{ log } \left| t + \frac{\sqrt{4 t^2 - 1}}{2} \right| + C\]
\[ = - \frac{1}{2} \text{ log }\left| \frac{2t + \sqrt{4 t^2 - 1}}{2} \right| + C\]
\[ = - \frac{1}{2}\left[ \text{ log }\left| 2t + \sqrt{4 t^2 - 1} \right| - \text{ log 2 }  \right] + C\]
\[ = - \frac{1}{2} \text{ log }\left| 2t + \sqrt{4 t^2 - 1} \right| + \frac{\text{ log }  2}{2} + C\]
`  \text{ let C '} = {\log 2}/{2} + C `
` = -{1}/{2} log  |2 cos t + \sqrt{4 \cos^2 t - 1} \| + C `

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 5 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×