Advertisements
Advertisements
Question
Solution
` ∫ { sin x dx }/{\sqrt{4 + cos^2 x -1}} `
\[\text{ let }\cos x = t\]
\[ \Rightarrow - \text{ sin x dx }= dt\]
\[ \Rightarrow \text{ sin x dx } = - dt\]
Now, ` ∫ { sin x dx }/{\sqrt{4 + cos^2 x -1}} `
\[ = \int\frac{- dt}{\sqrt{4 t^2 - 1}}\]
\[ = \int\frac{- dt}{\sqrt{4\left( t^2 - \frac{1}{4} \right)}}\]
\[ = - \frac{1}{2}\int\frac{dt}{\sqrt{t^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{2} \text{ log }\left| t + \sqrt{t^2 - \frac{1}{4}} \right| + C\]
\[ = - \frac{1}{2} \text{ log } \left| t + \frac{\sqrt{4 t^2 - 1}}{2} \right| + C\]
\[ = - \frac{1}{2} \text{ log }\left| \frac{2t + \sqrt{4 t^2 - 1}}{2} \right| + C\]
\[ = - \frac{1}{2}\left[ \text{ log }\left| 2t + \sqrt{4 t^2 - 1} \right| - \text{ log 2 } \right] + C\]
\[ = - \frac{1}{2} \text{ log }\left| 2t + \sqrt{4 t^2 - 1} \right| + \frac{\text{ log } 2}{2} + C\]
` \text{ let C '} = {\log 2}/{2} + C `
` = -{1}/{2} log |2 cos t + \sqrt{4 \cos^2 t - 1} \| + C `
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .