Advertisements
Advertisements
Question
Solution
We have,
\[I = \int \frac{dx}{x\left( x^4 - 1 \right)}\]
\[ = \int \frac{x^3 dx}{x^4 \left( x^4 - 1 \right)}\]
\[\text{Putting }x^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t\left( t - 1 \right)}\]
\[\text{Let }\frac{1}{t\left( t - 1 \right)} = \frac{A}{t} + \frac{B}{t - 1}\]
\[ \Rightarrow \frac{1}{t\left( t - 1 \right)} = \frac{A\left( t - 1 \right) + B t}{t\left( t - 1 \right)}\]
\[ \Rightarrow 1 = A\left( t - 1 \right) + Bt\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A \times 0 + B\left( 1 \right)\]
\[ \Rightarrow B = 1\]
\[\text{Putting }t = 0\]
\[ \therefore 1 = A\left( 0 - 1 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[ \therefore I = - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{4}\int\frac{dt}{t - 1}\]
\[ = - \frac{1}{4}\log \left| t \right| + \frac{1}{4}\log \left| t - 1 \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{t - 1}{t} \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{x^4 - 1}{x^4} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Evaluate the following integral:
Write a value of
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]