English

∫ 1 X ( X 4 − 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
Sum

Solution

We have,
\[I = \int \frac{dx}{x\left( x^4 - 1 \right)}\]
\[ = \int \frac{x^3 dx}{x^4 \left( x^4 - 1 \right)}\]
\[\text{Putting }x^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t\left( t - 1 \right)}\]
\[\text{Let }\frac{1}{t\left( t - 1 \right)} = \frac{A}{t} + \frac{B}{t - 1}\]
\[ \Rightarrow \frac{1}{t\left( t - 1 \right)} = \frac{A\left( t - 1 \right) + B t}{t\left( t - 1 \right)}\]
\[ \Rightarrow 1 = A\left( t - 1 \right) + Bt\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A \times 0 + B\left( 1 \right)\]
\[ \Rightarrow B = 1\]
\[\text{Putting }t = 0\]
\[ \therefore 1 = A\left( 0 - 1 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[ \therefore I = - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{4}\int\frac{dt}{t - 1}\]
\[ = - \frac{1}{4}\log \left| t \right| + \frac{1}{4}\log \left| t - 1 \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{t - 1}{t} \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{x^4 - 1}{x^4} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 54 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

` ∫   cos  3x   cos  4x` dx  

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×