English

∫ X √ X 2 + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x\sqrt{x^2 + x} \text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int x\sqrt{x^2 + x}dx\]
\[\text{ Also, }x = \lambda\frac{d}{dx}\left( x^2 + x \right) + \mu\]
\[ \Rightarrow x = \lambda\left( 2x + 1 \right) + \mu\]
\[ \Rightarrow x = \left( 2\lambda \right)x + \lambda + \mu\]
\[\text{Equating coefficient of like terms}\]
\[2\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{2}\]
\[\text{ And }\]
\[\lambda + \mu = 0\]
\[ \Rightarrow \mu = - \frac{1}{2}\]
\[ \therefore I = \int \left[ \frac{1}{2}\left( 2x + 1 \right) - \frac{1}{2} \right] \sqrt{x^2 + x}dx\]
\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x}dx - \frac{1}{2}\int\sqrt{x^2 + x}dx\]
\[ = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x}dx - \frac{1}{2}\int\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x} \text{  dx }- \frac{1}{2}\int\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}\text{  dx }\]
\[\text{ Let x}^2 + x = t\]
\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \frac{1}{2}\int\sqrt{t} \text{ dt }- \frac{1}{2}\left[ \frac{x + \frac{1}{2}}{2} \sqrt{x^2 + x} - \frac{1}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} - \left( \frac{2x + 1}{8} \right) \sqrt{x^2 + x} + \frac{1}{16}\text{ log } \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2} + x \right| + C\]
\[ = \frac{1}{3} \left( x^2 + x \right)^\frac{3}{2} - \left( \frac{2x + 1}{8} \right) \sqrt{x^2 + x} + \frac{1}{16}\text{ log } \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2} + x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 10 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×