English

∫ ( X − 3 ) √ X 2 + 3 X − 18 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[\text{ We  express x - 3} = A\left( \frac{d}{d x}\left( x^2 + 3x - 18 \right) \right) + B\]
\[x - 3 = A(2x + 3) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[1 = 2A \text{ and }- 3 = 3A + B\]
\[or A = \frac{1}{2} \text{ and B }= - \frac{9}{2} \]
\[ \therefore I = \int\left( \frac{1}{2}\left( 2x + 3 \right) - \frac{9}{2} \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \frac{1}{2}\int\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }- \frac{9}{2}\int\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \frac{1}{2} I_1 - \frac{9}{2} I_2 . . . (1)\]
\[\text{ Now,} I_1 = \int\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} dx\]
\[ \text{ Let x}^2 + 3x - 18 = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 2x + 3 \right)dx = du\]
\[ \therefore I_1 = \int\sqrt{u}du\]
\[ = \frac{2}{3} u^\frac{3}{2} + c_1 \]
\[ = \frac{2}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \int\sqrt{x^2 + 3x + \frac{9}{4} - \frac{9}{4} - 18} \text{  dx }\]
\[ = \int\sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} dx\]
\[ \text{ Let} \left( x + \frac{3}{2} \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = du\]
\[ \therefore I_2 = \int\sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} du\]
\[ = \frac{u}{2}\sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} - \frac{1}{2} \left( \frac{9}{2} \right)^2 \text { log }\left| u + \sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} \right| + c_2 \]
\[ = \frac{x + \frac{3}{2}}{2}\sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} - \frac{1}{2} \left( \frac{9}{2} \right)^2 \text{ log}\left| \left( x + \frac{3}{2} \right) + \sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} \right| + c_2 \]
\[ = \frac{2x + 3}{4}\sqrt{x^2 + 3x - 18} - \frac{81}{8}\text{ log }\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get }\]
\[ \therefore I = \frac{1}{2}\left( \frac{2}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} + c_1 \right) - \frac{9}{2}\left( \frac{2x + 3}{4}\sqrt{x^2 + 3x - 18} - \frac{81}{8}\text{ log }\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c_2 \right)\]
\[ = \frac{1}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} - \frac{9}{8}\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\text{ log}\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c\]
\[\text{ Hence,} \int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }= \frac{1}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} - \frac{9}{8}\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\log\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 11 | Page 159

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×