English

Evaluate the following integral: ∫x3+x+1x2−1dx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{x^3 + x + 1}{x^2 - 1}dx\]
 
\[\text{Here the integrand }\frac{x^3 + x + 1}{x^2 - 1}\text{ is not a proper rational function, so we divide }x^3 + x + 1\text{ by }x^2 - 1\text{ and find that}\]
 
\[\frac{x^3 + x + 1}{x^2 - 1} = x + \frac{2x + 1}{x^2 - 1} = x + \frac{2x + 1}{\left( x + 1 \right)\left( x - 1 \right)}\]
 
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 1 \right)} = \frac{A}{x + 1} + \frac{B}{x - 1}\]
 
\[\Rightarrow 2x + 1 = A\left( x - 1 \right) + B\left( x + 1 \right)\]
 
Equating the coefficients of x and constants, we get
 
\[2 = A + B\text{ and }1 = - A + B\]
 
\[\text{or }A = \frac{1}{2}\text{ and }B = \frac{3}{2}\]
 
\[\therefore I = \int\left( x + \frac{\frac{1}{2}}{x + 1} + \frac{\frac{3}{2}}{x - 1} \right)dx\]
 
\[= \int x\ dx + \frac{1}{2}\int\frac{1}{x + 1}dx + \frac{3}{2}\int\frac{1}{x - 1} dx\]
 
\[= \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
 
\[= \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
 
\[\text{Hence, }\int\frac{x^3 + x + 1}{x^2 - 1}dx = \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 26 | Page 177

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×