मराठी

Evaluate the following integral: ∫x3+x+1x2−1dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]
बेरीज

उत्तर

\[\text{Let }I = \int\frac{x^3 + x + 1}{x^2 - 1}dx\]
 
\[\text{Here the integrand }\frac{x^3 + x + 1}{x^2 - 1}\text{ is not a proper rational function, so we divide }x^3 + x + 1\text{ by }x^2 - 1\text{ and find that}\]
 
\[\frac{x^3 + x + 1}{x^2 - 1} = x + \frac{2x + 1}{x^2 - 1} = x + \frac{2x + 1}{\left( x + 1 \right)\left( x - 1 \right)}\]
 
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 1 \right)} = \frac{A}{x + 1} + \frac{B}{x - 1}\]
 
\[\Rightarrow 2x + 1 = A\left( x - 1 \right) + B\left( x + 1 \right)\]
 
Equating the coefficients of x and constants, we get
 
\[2 = A + B\text{ and }1 = - A + B\]
 
\[\text{or }A = \frac{1}{2}\text{ and }B = \frac{3}{2}\]
 
\[\therefore I = \int\left( x + \frac{\frac{1}{2}}{x + 1} + \frac{\frac{3}{2}}{x - 1} \right)dx\]
 
\[= \int x\ dx + \frac{1}{2}\int\frac{1}{x + 1}dx + \frac{3}{2}\int\frac{1}{x - 1} dx\]
 
\[= \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
 
\[= \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
 
\[\text{Hence, }\int\frac{x^3 + x + 1}{x^2 - 1}dx = \frac{x^2}{2} + \frac{1}{2}\log\left| x + 1 \right| + \frac{3}{2}\log\left| x - 1 \right| + c\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 26 | पृष्ठ १७७

संबंधित प्रश्‍न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×