मराठी

Evaluate the following: d∫3x-1x2+9dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`

बेरीज

उत्तर

Let I = `int (3x - 1)/sqrt(x^2 + 9) "d"x`

= `int (3x)/sqrt(x^2 + 9) "d"x - int 1/sqrt(x^2 + 9) "d"x`

I = I1 – I2

Now I1 = `int (3x)/sqrt(x^2 + 9) "d"x`

Put x2 + 9 = t

⇒ 2x dx = dt

x dx = – dt

∴ I1 = `3/2 int "dt"/sqrt("t")`

= `3/2 * 2sqrt("t") + "C"_1`

= `3sqrt(x^2 + 9) + "C"_1`

I2 = `int 1/sqrt(x^2 + 9) "d"x`

= `int 1/sqrt(x^2 + (3)^2) "d"x`

= `log|x + sqrt(x^2 + (3)^2)| + "C"_2`  ....`[because int 1/sqrt(x^2 + "a"^2) "d"x = log|x + sqrt(x^2 + "a"^2)| + "C"]`

= `log|x + sqrt(x^2 + 9)| + "C"_2`

∴ I = I1 – I2 

= `3sqrt(x^2 + 9) + "C"_1 - log|x + sqrt(x^2 + 9)| - "C"_2`

= `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + ("C"_1 - "C"_2)`

Hence, I = `3sqrt(x^2 + 9) - log|x + sqrt(x^2 + 9)| + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 16 | पृष्ठ १६४

संबंधित प्रश्‍न

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×