मराठी

∫ ( X 2 + 1 ) ( X 2 + 4 ) ( X 2 + 3 ) ( X 2 − 5 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]
बेरीज

उत्तर

\[I=\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Since,

\[\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left[ \left( x^2 + 3 \right) - 2 \right]\left[ \left( x^2 - 5 \right) + 9 \right]}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
\[ \Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( x^2 + 3 \right)\left( x^2 - 5 \right) + 9\left( x^2 + 3 \right) - 2\left( x^2 - 5 \right) - 18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]

\[\Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - \frac{18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}.............(1)\]

Let 

\[I_1 = \int\frac{1}{( x^2 + 3)( x^2 - 5)}\text{ and }x^2 = y\]

\[\Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{A}{\left( y + 3 \right)} + \frac{B}{\left( y - 5 \right)}\]
\[ = \frac{A\left( y - 5 \right) + B\left( y + 3 \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
\[ \Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{\left( A + B \right)y - \left( 5A + 3B \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]

Comparing coefficients, we get

\[A + B = 0\text{ and }5A + 3B = - 1\]
\[\text{By solving the equations, we get}\]
\[A = - \frac{1}{8}\text{ and }B = \frac{1}{8}\]

From (1), we get

\[I = \int\left[ 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - 18\left( \frac{- 1}{8\left( x^2 + 3 \right)} + \frac{1}{8\left( x^2 - 5 \right)} \right) \right]dx\]

\[\Rightarrow I = \int\left[ 1 + \frac{27}{4\left( x^2 - 5 \right)} + \frac{1}{\left( x^2 + 3 \right)} \right]dx\]
\[ \Rightarrow I = \int1dx + \int\frac{27}{4\left( x^2 - 5 \right)}dx + \int\frac{1}{\left( x^2 + 3 \right)}dx\]
\[ \therefore I = x + \frac{27}{8\sqrt{5}}\ln\left( \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| \right) + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 69 | पृष्ठ १७८

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×