Advertisements
Advertisements
प्रश्न
उत्तर
Since,
\[\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left[ \left( x^2 + 3 \right) - 2 \right]\left[ \left( x^2 - 5 \right) + 9 \right]}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
\[ \Rightarrow \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( x^2 + 3 \right)\left( x^2 - 5 \right) + 9\left( x^2 + 3 \right) - 2\left( x^2 - 5 \right) - 18}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}\]
Let
\[\Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{A}{\left( y + 3 \right)} + \frac{B}{\left( y - 5 \right)}\]
\[ = \frac{A\left( y - 5 \right) + B\left( y + 3 \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
\[ \Rightarrow \frac{1}{\left( y + 3 \right)\left( y - 5 \right)} = \frac{\left( A + B \right)y - \left( 5A + 3B \right)}{\left( y + 3 \right)\left( y - 5 \right)}\]
Comparing coefficients, we get
\[A + B = 0\text{ and }5A + 3B = - 1\]
\[\text{By solving the equations, we get}\]
\[A = - \frac{1}{8}\text{ and }B = \frac{1}{8}\]
From (1), we get
\[I = \int\left[ 1 + \frac{9}{\left( x^2 - 5 \right)} - \frac{2}{\left( x^2 + 3 \right)} - 18\left( \frac{- 1}{8\left( x^2 + 3 \right)} + \frac{1}{8\left( x^2 - 5 \right)} \right) \right]dx\]
\[\Rightarrow I = \int\left[ 1 + \frac{27}{4\left( x^2 - 5 \right)} + \frac{1}{\left( x^2 + 3 \right)} \right]dx\]
\[ \Rightarrow I = \int1dx + \int\frac{27}{4\left( x^2 - 5 \right)}dx + \int\frac{1}{\left( x^2 + 3 \right)}dx\]
\[ \therefore I = x + \frac{27}{8\sqrt{5}}\ln\left( \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| \right) + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`