मराठी

Evaluate the Following Integral ∫ X 2 + X + 1 ( X 2 + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]
बेरीज

उत्तर

\[\text{Let }I = \int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

We express

\[\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow x^2 + x + 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]

\[\text{Equating the coefficients of x^2 , x and constants, we get}\]

\[1 = A + B and 1 = 2B + C and 1 = A + 2C\]

\[or A = \frac{3}{5} and B = \frac{2}{5} and C = \frac{1}{5} \]

\[ \therefore I = \int\left( \frac{\frac{3}{5}}{x + 2} + \frac{\frac{2}{5}x + \frac{1}{5}}{x^2 + 1} \right)dx\]

\[ = \frac{3}{5}\int\frac{1}{x + 2}dx + \frac{2}{5}\int\frac{x}{x^2 + 1} dx + \frac{1}{5}\int\frac{1}{x^2 + 1} dx\]

\[ = \frac{3}{5} I_1 + \frac{2}{5} I_2 + \frac{1}{5} I_3 ............(1)\]

\[\text{Now, }I_1 = \int\frac{1}{x + 2}dx\]

Let x + 2 = u

On differentiating both sides, we get

\[ dx = du\]

\[ \therefore I_1 = \int\frac{1}{u}du\]

\[ = \log\left| u \right| + c_1 \]

\[ = \log\left| x + 2 \right| + c_1 ............(2)\]

\[\text{And, }I_2 = \int\frac{x}{x^2 + 1} dx\]

\[\text{Let }\left( x^2 + 1 \right) = u\]

On differentiating both sides, we get

\[ 2x\ dx = du\]

\[ \therefore I_2 = \frac{1}{2}\int\frac{1}{u}du\]

\[ = \frac{1}{2}\log\left| u \right| + c_2 \]

\[ = \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 ............(3)\]

\[\text{And, }I_3 = \int\frac{1}{x^2 + 1} dx\]

\[ = \tan^{- 1} x + c_3 ..............(4)\]

From (1), (2), (3) and (4), we get

\[ \therefore I = \frac{3}{5}\left( \log\left| x + 2 \right| + c_1 \right) + \frac{2}{5}\left( \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 \right) + \frac{1}{5}\left( \tan^{- 1} x + c_3 \right)\]

\[ = \frac{3}{5}\log\left| x + 2 \right| + \frac{1}{5}\log\left| x^2 + 1 \right| + \frac{1}{5} \tan^{- 1} x + c\]

\[\text{Hence, }\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx = \frac{3}{5}\log\left| x + 2 \right| + \frac{1}{5}\log\left| x^2 + 1 \right| + \frac{1}{5} \tan^{- 1} x + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 14 | पृष्ठ १७६

संबंधित प्रश्‍न

`∫   x    \sqrt{x + 2}     dx ` 

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×