Advertisements
Advertisements
प्रश्न
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
उत्तर
\[\text{ Let I } = \int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2 dt\]
\[\text{ Putting }\sqrt{x} = t \text{ and }\frac{dx}{\sqrt{x}} = 2 \text{ dt , we get} \]
\[ \therefore I = 2\int\text{ sin t dt}\]
\[ = - 2 \text{ cos t} + C \left( \because t = \sqrt{x} \right)\]
\[ = - 2 \cos \sqrt{x} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`