Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e}dx\]
\[\text{Putting}\ e^x + x^e = t\]
\[ \Rightarrow e^x + e x^{e - 1} = \frac{dt}{dx}\]
\[ \Rightarrow e\left( e^{x - 1} + x^{e - 1} \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( e^{x - 1} + x^{e - 1} \right)dx = \frac{dt}{e}\]
\[ \therefore I = \frac{1}{e}\int\frac{1}{t}dt\]
\[ = \frac{1}{e} \text{ln}+ \left| t \right| + C\]
\[ = \frac{1}{e} \text{ln} \left| e^x + x^e \right| + C \left[ \because t = e^x + x^e \right]\]
APPEARS IN
संबंधित प्रश्न
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`