मराठी

Evaluate the Following Integral: ∫ 1 Sin 4 X + Sin 2 X Cos 2 X + Cos 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]
बेरीज

उत्तर

\[\text{ Let I} = \int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]
\[ = \int\frac{1}{\left( \sin^2 x + \cos^2 x \right)^2 - \sin^2 x \cos^2 x}dx\]
\[ = \int\frac{1}{1 - \sin^2 x \cos^2 x}dx\]
\[ = \int\frac{\frac{1}{\cos^4 x}}{\frac{1}{\cos^4 x} - \frac{\sin^2 x}{\cos^2 x}}dx\]
\[ = \int\frac{\sec^2 x\left( 1 + \tan^2 x \right)}{\sec^4 x - \tan^2 x}dx\]
\[ \text{ Let  tan x }= t\]
\[ \text{On differentiating both sides, we get}\]
\[ \sec^2 \text{ x dx }= dt\]
\[ \therefore I = \int\frac{1 + t^2}{\left( 1 + t^2 \right)^2 - t^2}dt\]
\[ = \int\frac{1 + t^2}{\left( t^4 + t^2 + 1 \right)}dt\]
\[ = \int\frac{\frac{1}{t^2} + 1}{\left( t^2 + 1 + \frac{1}{t^2} \right)}dt\]
\[ = \int\frac{\frac{1}{t^2} + 1}{\left( t - \frac{1}{t} \right)^2 + 3}dt\]
\[ \text{ Let }\left( t - \frac{1}{t} \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 1 + \frac{1}{t^2} \right) dt = du\]
\[ \therefore I = \int\frac{1}{\left( u \right)^2 + 3}du\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{u}{\sqrt{3}} \right) + c\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{3}} \right) + c\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\tan x - \cot x}{\sqrt{3}} \right) + c\]
\[\text{ Hence,} \int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\tan x - \cot x}{\sqrt{3}} \right) + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.31 | Q 11 | पृष्ठ १९०

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×