Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{ Let I} = \int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]
\[ = \int\frac{1}{\left( \sin^2 x + \cos^2 x \right)^2 - \sin^2 x \cos^2 x}dx\]
\[ = \int\frac{1}{1 - \sin^2 x \cos^2 x}dx\]
\[ = \int\frac{\frac{1}{\cos^4 x}}{\frac{1}{\cos^4 x} - \frac{\sin^2 x}{\cos^2 x}}dx\]
\[ = \int\frac{\sec^2 x\left( 1 + \tan^2 x \right)}{\sec^4 x - \tan^2 x}dx\]
\[ \text{ Let tan x }= t\]
\[ \text{On differentiating both sides, we get}\]
\[ \sec^2 \text{ x dx }= dt\]
\[ \therefore I = \int\frac{1 + t^2}{\left( 1 + t^2 \right)^2 - t^2}dt\]
\[ = \int\frac{1 + t^2}{\left( t^4 + t^2 + 1 \right)}dt\]
\[ = \int\frac{\frac{1}{t^2} + 1}{\left( t^2 + 1 + \frac{1}{t^2} \right)}dt\]
\[ = \int\frac{\frac{1}{t^2} + 1}{\left( t - \frac{1}{t} \right)^2 + 3}dt\]
\[ \text{ Let }\left( t - \frac{1}{t} \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 1 + \frac{1}{t^2} \right) dt = du\]
\[ \therefore I = \int\frac{1}{\left( u \right)^2 + 3}du\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{u}{\sqrt{3}} \right) + c\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{3}} \right) + c\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\tan x - \cot x}{\sqrt{3}} \right) + c\]
\[\text{ Hence,} \int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\tan x - \cot x}{\sqrt{3}} \right) + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`