Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
उत्तर
\[\text{ Let I} = \int\frac{dx}{\sqrt{1 - x^2}}\]
\[\text{ Let x }= \sin \theta\]
\[ \Rightarrow dx = \cos \theta\]
\[ \therefore I = \int\frac{\cos \theta}{\cos \theta}d\theta\]
\[ = \int d\theta\]
\[ = \theta + C\]
\[ = \sin^{- 1} x + C \left( \because x = \sin \theta \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`