मराठी

Evaluate the Following Integrals: ∫ E 2 X Sin ( 3 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]
बेरीज

उत्तर

\[\text{ We have, } \]
\[I = \int e^{2x} \sin\left( 3x + 1 \right) dx\]
\[\text{Let the first function be sin ( 3x + 1 ) and the second function be} \text{ e}^{2x} . \]
\[\text{First we find the integral of the second function}, i . e . , \int e^{2x} \text{ dx }. \]
\[\int e^{2x} dx = \frac{1}{2} e^{2x} \]
\[\text{Now, using integration by parts, we get}\]
\[I = \text{ sin}\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \left( \frac{d \left( \sin\left( 3x + 1 \right) \right)}{d x} \right)\int e^{2x} dx \right]dx\]
\[ = \frac{1}{2} \text{ sin}\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\int\left[ \cos\left( 3x + 1 \right) e^{2x} \right]dx\]
\[ = \frac{1}{2} \text{ sin}\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} \text{ dx }- \int\left[ \left( \frac{d \left( \cos\left( 3x + 1 \right) \right)}{d x} \right)\int e^{2x} dx \right]\text{ dx }\right\}\]
\[ = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\left\{ \frac{1}{2}\cos\left( 3x + 1 \right) e^{2x} + \frac{3}{2}\int\text{ sin}\left( 3x + 1 \right) e^{2x} dx \right\}\]
\[ = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + c\]
\[I + \frac{9}{4}I = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + c\]
\[\frac{13}{4}I = \frac{e^{2x}}{2}\left[ \text{ sin }\left( 3x + 1 \right) - \frac{3}{2}\cos\left( 3x + 1 \right) \right] + c\]
\[I = \frac{2}{13} e^{2x} \left[ \text{ sin }\left( 3x + 1 \right) - \frac{3}{2}\cos\left( 3x + 1 \right) \right] + c\]
\[ = \frac{e^{2x}}{13}\left[ 2 \text{ sin }\left( 3x + 1 \right) - 3 \cos\left( 3x + 1 \right) \right] + c\]
\[\text{ Hence, } \int e^{2x} \text{ sin }\left( 3x + 1 \right) dx = \frac{e^{2x}}{13}\left[ 2 \text{ sin }\left( 3x + 1 \right) - 3 \cos\left( 3x + 1 \right) \right] + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.27 [पृष्ठ १४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.27 | Q 7 | पृष्ठ १४९

संबंधित प्रश्‍न

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×