मराठी

Evaluate the Following Integrals: ∫ 1 ( X 2 + 2 X + 10 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 

बेरीज

उत्तर

\[\text{Let I }= \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

\[ = \int\frac{1}{\left[ \left( x + 1 \right)^2 + 3^2 \right]^2}dx\]

\[ \text{Let x + 1 }= 3\tan\theta\]

\[ \text{On differentiating both sides, we get}\]

\[ dx = 3 \sec^2 \theta \text{ dθ }\]

\[ \therefore I = \int\frac{1}{\left[ 3^2 \tan^2 \theta + 3^2 \right]^2}3 \sec^2  θ    \text{ dθ }\]

\[ = \frac{1}{27}\int\frac{\sec^2 \theta}{\sec^4 \theta}d\theta\]

\[ = \frac{1}{27}\int\frac{1}{\sec^2 \theta}d\theta\]

`= {1}/{27}\int \text{ cos}^2  θ  \text{ dθ }`

 

` = {1}/{54}\int\left( 1 + cos2θ  ) dθ `

\[ = \frac{1}{54}\left( \theta + \frac{\sin2\theta}{2} \right) + c\]

\[ = \frac{1}{54}\left( \theta + \frac{\tan\theta}{1 + \tan^2 \theta} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\tan\left( \tan^{- 1} \frac{x + 1}{3} \right)}{1 + \tan^2 \left( \tan^{- 1} \frac{x + 1}{3} \right)} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{1 + \left( \frac{x + 1}{3} \right)^2} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{\frac{x^2 + 2x + 10}{9}} \right) + c\]

\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]

\[Hence, \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.13 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.13 | Q 5 | पृष्ठ ७९

संबंधित प्रश्‍न

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×