Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{Let I }= \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]
\[ = \int\frac{1}{\left[ \left( x + 1 \right)^2 + 3^2 \right]^2}dx\]
\[ \text{Let x + 1 }= 3\tan\theta\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = 3 \sec^2 \theta \text{ dθ }\]
\[ \therefore I = \int\frac{1}{\left[ 3^2 \tan^2 \theta + 3^2 \right]^2}3 \sec^2 θ \text{ dθ }\]
\[ = \frac{1}{27}\int\frac{\sec^2 \theta}{\sec^4 \theta}d\theta\]
\[ = \frac{1}{27}\int\frac{1}{\sec^2 \theta}d\theta\]
`= {1}/{27}\int \text{ cos}^2 θ \text{ dθ }`
` = {1}/{54}\int\left( 1 + cos2θ ) dθ `
\[ = \frac{1}{54}\left( \theta + \frac{\sin2\theta}{2} \right) + c\]
\[ = \frac{1}{54}\left( \theta + \frac{\tan\theta}{1 + \tan^2 \theta} \right) + c\]
\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\tan\left( \tan^{- 1} \frac{x + 1}{3} \right)}{1 + \tan^2 \left( \tan^{- 1} \frac{x + 1}{3} \right)} \right) + c\]
\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{1 + \left( \frac{x + 1}{3} \right)^2} \right) + c\]
\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{\frac{x + 1}{3}}{\frac{x^2 + 2x + 10}{9}} \right) + c\]
\[ = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]
\[Hence, \int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx = \frac{1}{54}\left( \tan^{- 1} \frac{x + 1}{3} + \frac{3\left( x + 1 \right)}{x^2 + 2x + 10} \right) + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)